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High-amplitude and Low-amplitude Dynamic Measurements and Assessments. 

Codes of practice and standards use much of their 
output for guidance on the design process. 
Notwithstanding this there is a little information 
about acceptable performance criteria, and such 
approaches as drift limits are widely used in seismic 
assessment.  None of this addresses the state of 
health and the remaining capacity of a structure. 

This paper introduces a different complementary 
method that addresses the current state of a 
structure without relying only on measurements at 
high amplitude. The diagram to the right 
demonstrates this concept. The response of a 
structure is shown before, during and after a seismic 
event. The suggested complementary approach uses 
a comparison of the ‘before and after’ dynamic behavior of the structure to assess its probable response to 
large events in the future. This complements the current method of analysis using data from the high 
amplitude event only.  Also, it provides an economical alternative for all structures if they are not actively 
instrumented for high amplitude seismic monitoring.  

There are several benefits to this approach: 

1. Measurement of a structure’s response at high amplitude is imprecise because of the short record-
length, and several non-linearities involved. Details are considered below. 

2. Assessment of the response at low amplitude carries a vast quantity of information about the state of a 
structure and of its capacity, if analyzed correctly. 

3. Low amplitude data can be collected over long periods and this allows for precise and accurate 
measurement and analysis of the structure’s characteristics. 

4. Changes in the dynamic parameters reflect the effects of damage, or ageing in a structure and can be 
assessed accurately with longer data lengths. 

A limitation of low amplitude measurement analysis is that no direct evidence of the behavior at high 
amplitude is included in the analysis. However, this can be overcome by using the same design process that is 
included in codes of practice and standards, but now having a calibrated structural definition in the elastic 
range. Extrapolation into ductile behavior can be performed exactly as currently conducted. The behavior of a 
structure at high amplitude is subject to a series of non-linearities, and measurement of this response 
together with the calibrated low amplitude behavior and the design assumptions for the ductile range,  



 

 

potentially allow a greater understanding of the high amplitude response.   Also, by combining the two 
approaches, a prediction combined with a calibrated measurement of actual performance is achieved.   

The use of structural dynamic measurements is well established and can be used to define the system 
parameters by analysis of the modes of vibration that are inherent in the mathematical description of a 
structure. 

Codes of practice do a very good job of establishing the magnitude and risk of a seismic event at a particular 
location, and this complementary approach does not change that, indeed it seeks to utilize the codification 
approach on top of the ‘before and after’ comparison. 

The different approaches adopted by seismic, wind and mechanical engineers over the decades has been 
predicated on the data lengths commonly available. Each discipline can learn from others. 

The important modal parameters used to describe a structure are: 

 Frequency of resonance 
 Modal damping ratio 
 Deflected form of a mode of vibration (mode shape, also acts as an influence function) 
 Displacement per unit force 
 Participating mass 

Interestingly, techniques for the measurement of structural dynamics parameters are considered in some 
detail in the document FEMA 461 (Interim testing protocols for determining the seismic performance 
characteristics of structural and nonstructural components, June, 2007) for shake table experiments. This 
paper extends these ideas to the full-scale, at the same time assessing the implications of the requirements 
for the analysis of randomly induced responses, necessary for statistically accurate parameter estimation.  

High-amplitude techniques.    

Earthquakes generally last for a few seconds to a few minutes, depending on the magnitude and distance of 
the event, providing a limited length of dynamic data for analysis.  As a result, the currently used design 
approach is to combine the imposed force with the structural characteristics to produce a probable response. 
This process involves combining both force and response data, coupled with the use of ‘most likely’ values for 
ductility, energy dissipation, and acceptance of energy by the structure. In this approach, the incoming energy 
is assessed as having different energy levels at a spread of periods. In both mechanical and wind engineering, 
with longer lengths of data it is possible to use spectral techniques to establish structural parameters to a high 
degree of accuracy. In this way the characteristics of a structure, albeit in the elastic range, can be assessed 
with precision.  This accurate characterization is very valuable in the seismic community.  Attachment A 
contains a paper by Cruz and Miranda (2019) entitled, “Reliability of Damping Ratios Inferred from the Seismic 
Response of Buildings”, which discusses some of the challenges in determining building modal periods of 
response and damping ratios from recorded earthquake strong-motion data. 

1. Structural modal period/frequency content of forcing – In this section, we separate the structure’s 
characteristics from the incoming seismic action and use the structural characterization to establish its 
condition. For a long time, the seismic force has been established by using a series of earthquake data 
from structures. Now, by using low amplitude data, very low noise instrumentation, and long data sets, 
we can separate the structural characteristics from the action caused by the seismic event.  Mixing the  



 

 

effects of the input action with the response causes a series of problems associated with structural 
identification. When the response of the structure is assessed at low amplitude, the modal parameters, 
including both long and short period resonances, can be assessed with high accuracy. This information 
is difficult to obtain from high-amplitude data because of the following:  

(a) the short duration of high-amplitude events contributes to large variance errors in estimating 
building periods when using spectrally based analysis;  

(b) the structural forces induced by ground motions reflect a combination of both the input forces 
and the structural response, as opposed to only the structural response;  

 
(c) because of (b) above, the modal mass, the modal frequency and the modal and overall 

damping, represent a changed system that behaves as a larger system incorporating not just 
the structure, but also the adjacent ground. 

 
(d) the input forces can be composed of quickly varying forces spread across a range of 

frequencies.  
 

(e) the period of the structure changes when the amplitude of response is high.  This can be caused 
by damage (in which the modal stiffness changes), by changes to structural damping and by 
changes of participating mass when soil-structure interaction occurs, (as in (c) above).  
 

The foregoing implies that it is easier to measure the structural characteristics when soil/structure 
interaction is minimized.  All of these factors contribute to significant challenges in determining the 
accurate modal periods of response of a building during high-amplitude recordings.  As a result, high-
amplitude techniques that experience these inherent difficulties yield varying levels of reliability of the 
results.    This variability leads to a lack in confidence of the significance of the dynamic characteristic 
due to the difficulty of defining a parameter from a short data sample in which the parameter may 
change quite rapidly.   
 

2. Displacement – Displacements are calculated from the high-amplitude events by analyzing the 
acceleration time history around the peak values of the event.  Then the time history is filtered to the 
dominant frequency.  Assuming simple harmonic motion (which is only a correct assumption if the 
frequency is invariant) the displacement is calculated using a double integration of the time history to 
simulate simple harmonic motion at a single frequency that may not represent the structural 
resonance.     Yet the standard analysis provides a reasonable estimate based on the primary 
frequency.  This leads to the imprecise estimation of peak displacements because of the behavior of 
the structure in short period modes of vibration.    

3. Damping – Calculating damping from high amplitude events is fraught with difficulties, not just 
because of the short record lengths, but also, and crucially, because damping is a measure of energy 
dissipation, and the energy dissipation in the soil contributes. If techniques of estimating modal 
damping of the structure are used, there is also the factor of the non-linear behavior masquerading as 
an increase in damping if the measurement is based on averaging methods (such as using spectrum- 

 



 

 

based methods, autocorrelation, or some time-stepping fitting methods). In the case of each of these 
methods there is an introduced bias that overestimates the value of damping. Fortuitously, there are 
now several methodologies for measuring non-linear damping directly from a time-history of response. 
The most important aspect of this analysis is that it becomes possible to establish the rate of change of 
damping with increasing amplitude. Nevertheless, for these methods to work accurately, long record 
lengths are required. 

Calculating damping from a technique of system identification (as depicted in the attached Cruz and 
Miranda paper) in which a time history is artificially created and compared with the measured 
response. Parameters are then changed until a satisfactory fit is achieved. The resulting damping 
estimate contains influences from all the aforementioned mechanisms as well as the structural 
contribution. There are several parameters that must be modified including both the force and the 
damping, and an error in the estimation of one assumption, influences the other. This has led to 
skepticism about the ability to extract damping data from high amplitude responses. 

It is common practice to assume, in seismic engineering design, that the structural component of 
damping may be assumed to be 5%, and that even if it is not, the calculation of displacement will still 
be quite accurate. Unfortunately, this is not true, and a small value of damping at low amplitude will 
result in a structure reaching high amplitude faster than expected, which in turn leaves it with inertia 
to overcome as well as the rising input forces.   

Value of this approach - Regardless of the sources of error, the high-amplitude techniques provide valuable 
information for engineers to conduct analysis from the time history of an earthquake.  Displacements are a 
critical criterion for determining the response from a seismic event and using the measurements can yield 
relatively accurate values. The use of these techniques in addition to the ‘before and after’ approach 
undoubtedly helps in establishing a complete picture of the structural behavior. A comparison of the response 
of the structure both ‘before and after’ a seismic event gives a comparison under similar conditions in which 
changes are a function of changes in the structure only. 

Limitations to this approach – It is important to be aware that parameters may be changing rapidly through a 
seismic event, and that changes may appear to be changes in other parameters. This is a function of the short 
data lengths, and the non-linearities in both the structure and the incoming force.  Thus, the variability of the 
dynamic characteristics erodes confidence in the accuracy of their estimation together with a lack of 
confidence in their true values.  Traditional high amplitude equipment is not capable of capturing low 
amplitude response information, although some of the most modern devices, already deployed, may be 
usable for this complementary approach.   

Low-amplitude techniques. 

In both mechanical and wind engineering the response to random excitation has been studied for over four 
decades.  By using low-amplitude measurements, the flexibility to measure the dynamic response can occur 
frequently, although times at which the wind is stronger, or traffic intensity is more severe allows the analysis 
to larger amplitudes of response, which in turn adds confidence to extrapolations to larger amplitudes within 
the elastic range.  The analysis of the dynamic response information is based on the use of sufficient lengths of 
data to allow spectrally based analysis to reduce random variance errors to within a well-defined proximity to 
the average response to a mean wind speed. Wind engineers then have several techniques for estimating the  



 

 

ratio of the peak response to the mean response. If the random data are well behaved, then this ratio is also 
well-behaved.   This type of random response is defined as stationary, meaning that the statistical properties 
remain invariant with time.   Thus, the system properties of the structure can be well defined with a high level 
of accuracy.   These dynamic parameters vary little within the elastic range which applies here. The luxury of 
this type of analysis is not available for short data lengths associated with earthquakes but can be used to 
complement that approach.  Therefore, these techniques provide the consistency needed to accurately define 
the dynamic parameters not available through seismic techniques. 

1. Frequencies of resonance - Wind engineers refer to the inverse of the period of a structure as the 
frequency of resonance.  By using the appropriate techniques for low-amplitude energy, estimating the 
structure’s dynamic properties, including the frequencies of resonance, can occur to a very high level 
of accuracy (99%).   Also, various structural modes of vibration can be identified allowing for clarity of 
the stiffness relationship throughout the structure.  Further, the mode shapes are always consistent in 
the elastic amplitude range which is not necessarily the case with high-amplitude responses. By 
introducing a ‘before and after’ measurement of the response of a structure it is possible to establish 
the displacement per unit force through the measurement of the parameters which define the 
structure as a system. This is possible because ‘before and after’ an event the modal mass is invariant. 

2. Damping – By using low-amplitude energy, the damping response is nearly 100% generated from the 
structural elements, and there is negligible contribution of the other mechanisms of damping such as 
radiation, hysteretic and viscous sources.    As referenced in the paper, Attachment B, “Generalized 
Random Decrement Method for Analysis of Vibration Data”, the Random Decrement Algorithm allows 
for measuring the structural damping response to a very high level of accuracy, generally better than 
98% accurate when measuring structural modes of vibration.    Because it is not common practice to 
separate structural damping from overall damping in the seismic design process the importance of the 
information available from the non-linear structural damping parameter may not be immediately 
obvious in the communities working with seismic design. Measuring ‘structural’ damping accurately is a 
critical aspect of defining the structure’s dynamic properties and cannot currently be achieved 
accurately using high-amplitude data sets.    The Random Decrement (RANDEC) algorithm gives an 
amplitude dependent curve that can give critical insight into how the structure functions over a wide 
range of amplitudes.   RANDEC was developed by NASA to detect early stage damage in the wings of 
the space shuttle, and if used appropriately, provides an accurate change in response due to damage 
to the structure.    This parameter is extremely sensitive to changes in energy dissipation within the 
structure, such as that caused by damage. 

Value to this approach – The use of low-amplitude techniques allows measurements to be taken almost any 
time since there is normally movement of the structure from ambient sources of excitation. So long as 
measuring equipment has a low noise platform, then very low amplitude responses can be captured. Because 
even these amplitudes represent motion in the linear-elastic range then extrapolation throughout that range 
is justified (and supported by experiment).    This provides flexibility and consistency for taking dynamic 
response measurements, and these measurements can be captured at almost all times, leading to an accurate 
assessment of the system properties.  The frequency response is accurate to within 99% and structural (non-
linear) damping values can be estimated to better than 98% precision using these techniques.  This high level 
of accuracy allows a precise comparison of the ‘before and after’ system properties, including their non-linear 
aspects. In this way the estimation of structural parameters becomes consistent and accurate. 



 

 

The equipment necessary for the capture of low amplitude responses can also be used to capture the high 
amplitude response. The inverse is not normally true, and so there is an added advantage to using these new 
techniques.  

Limitations to this approach – The establishment of structural identification through the use of low amplitude 
techniques requires extrapolation throughout the elastic range, and then beyond. The behavior of the 
structure at low amplitude can be used for calibration purposes, and then extrapolations within the ductile 
range must use conventional design assumptions.  

Value in combining both high-amplitude and low-amplitude techniques. 

Using both techniques provides a very clear picture of the performance of a structure as it transitions through 
a high-amplitude event: 

Before event – Using low-amplitude dynamic analysis techniques prior to a high-amplitude event would 
establish the baseline measurement of a structure’s dynamic characteristics and response. It allows the 
comparison of the structure’s description with what is expected in the design philosophy. Additionally, it can 
be used to establish the decreased capacity associated with ageing of the structure.  These measured 
structural parameters establish a baseline condition and can be used for future comparison to quantify 
damage to a high degree of accuracy. 

During the event – Analysis of the high-amplitude event gives an opportunity to establish the most likely 
velocity and displacement behavior during the high amplitude event, and these estimates give a good insight 
into the probability of damage having occurred. However, the information is important to understand how a 
structure responds to the imposed forces.    

After event – Taking a follow up post-event measurement of the dynamic properties provides a comparison of 
the any changes to the state of the structure.  Changes to mode shapes can indicate an area of weakness, 
changes to the frequency of resonance indicate a change of modal stiffness, and changes to structural 
damping indicate changes to the energy dissipation of the structure (such as those caused by cracking or other 
damage).   The structural damping parameter is extremely sensitive to damage, often 10 to 20 times more 
sensitive than changes in stiffness.   
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A B S T R A C T

This paper studies the reliability of damping ratios inferred from the seismic response of buildings employing a
modal minimization parametric system identification technique. The reliability of inferred damping ratios is
quantified through the use of three metrics: (1) dynamic amplification factors; (2) Arias modal contribution
factors; and (3) reliability intervals. Dynamic amplification factors measure the amplification of 1% damped
floor acceleration spectral ordinates of the recorded response at the roof in the vicinity of identified modal
periods with respect to those of the motion recorded at the base of the building. It is shown that this metric
allows to determine if the earthquake produced a minimum dynamic amplification of the first and second modes
of the structure, to reliably identify their damping ratios. The Arias modal contribution provides a measure of the
intensity of a computed modal response relative to the total predicted structural response. It is argued that only
damping ratios from modes with a minimum contribution to the seismic response may be reliably estimated. The
third metric corresponds to the reliability intervals of the identified damping ratios, which measure the sensi-
tivity of the objective function to small variations in the damping ratio. It is shown that the objective function is
typically significantly less sensitive to variations in damping ratios than to similar variations in modal periods,
which leads to larger variability in the results for damping with respect to that obtained in modal periods.
Reliability screening tests are developed based on establishing limiting values for these three metrics. It is shown
that these screening tests are capable of discriminating inferred damping ratios that are reliable from those that
are not, independently from the adopted identification technique, and also reducing the variability of the in-
ferred results.

1. Introduction

The inherent damping of a building is usually modeled as linear
viscous, as it is a simple mathematical representation of all the sources
of energy dissipation in a structure that are not explicitly included in
the structural model. These sources include, among others, the inherent
damping capacity of the building materials, the energy dissipation due
to friction between the different structural and non-structural elements
(or within them), the energy dissipated due to soil-structure interaction,
and the effects of the aerodynamic properties of the building [1]. Even
though there is evidence that some of these sources of energy dissipa-
tion do not behave in a viscous manner, assuming linear viscous
damping has become the standard in current structural analysis
methods because it significantly simplifies the differential equations of
motion (e.g., [2,3]) but, more importantly, because multiple studies
have shown that employing this damping model in buildings re-
sponding elastically allows to adequately reproduce the measured re-
sponse of instrumented buildings (e.g., [4–8]). Therefore, for many

years the most commonly used approach to model damping in struc-
tures responding elastically has been to group the contribution of the
various sources of energy dissipation - whose modeling may be im-
practical, too complex, or not yet fully understood - using a linear
viscous damping model. Given that it is not possible to measure
damping directly, the most reliable way to determine its value in ex-
isting buildings is by using system identification techniques to infer it
from measured dynamic responses.

Since the late 1970s, the field of structural identification has shifted
emphasis from non-parametric to more complex mechanical parametric
methods since they provide a better understanding of the mechanics of
the structure and because of the availability of faster computers [9]. A
parametric system identification technique consists in finding the op-
timal set of parameters to be used in a numerical model of the structure
in order to reproduce the recorded response with the least error. The
main advantage of using a parametric model system identification
technique is that a structural model is used, which allows the compu-
tation of response parameters not directly measured, such as lateral
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displacements, interstory drifts, story shears, story overturning mo-
ments, etc. These techniques also allow to understand the influence of
the parameters being inferred/identified on response parameters not
measured, providing an improved understanding of the seismic re-
sponse of the building. It should be stressed that models per se are not
identifiable, but rather what is identified are the best set of parameters
of the selected model that minimize a measure-of-fit between the re-
corded response and the response computed with a model. Different
parametric system identification methods differ primarily in the nu-
merical model of the building, the definition of the objective function
used to quantify the difference between the measured response and that
predicted by the numerical model, and the algorithm employed to
perform the optimization (e.g., [10–14]). Another differentiating factor
of different system identification techniques is whether the input to the
system is known or not. The field of Experimental Modal Analysis
(EMA) deals with methods that require knowledge of the input signal –
in the case of earthquake engineering, the input ground motion, – and
most studies attempting to identify structural properties from earth-
quake records fall into this category (e.g. [6–8,10,11,15–18]). The field
of Operational Modal Analysis (OMA) regards those methods where the
input signal is unknown. Recent investigations in this field show pro-
mising applications to the field of earthquake engineering (e.g.
[19–25]), especially when strong soil-structure interaction effects – that
might distort the input signal – are considered.

Structural models are an idealized mathematical description of the
motion of a building. In practice, several simplifying assumptions of the
selected model, such as linear-elasticity, time invariance, fixed condi-
tion at the base, linear viscous damping behavior, etc., are not entirely
satisfied. Consequently, the numerical model will never be able to
perfectly reproduce the measured structural response even if the re-
sponse is linear. In other words, there will always be an error in the
prediction, introducing uncertainty about the true values of the iden-
tified parameters. In addition to the system identification method used
to infer damping ratios, variability (and therefore uncertainties) in in-
ferred damping ratios are influence by many other factors such as ac-
curacy of the sensors, limited number of records or malfunction in
certain recording channels, limited duration of response, noise level in
the recorded acceleration time histories, modal response not suffi-
ciently excited or not sufficiently contributing to the total recorded
response, etc. Therefore, for a given building, identified damping ratios
may exhibit variations from one earthquake to another, particularly for
certain modes. Several investigations have dealt with the uncertainty of
the estimated parameters, most of which are based on a probabilistic
approach. One of the first works on this subject is the one by Gersch
[26], who employed the Cramer-Rao lower bound theorem to develop
expressions for the maximum achievable accuracy of the modal fre-
quencies and damping ratios inferred by a method based on the max-
imum-likelihood estimates of an auto-regressive model [27]. More re-
cent studies have taken similar approaches, leading to the conclusion
that the uncertainty in the identified damping ratios is significantly
larger than in the identified modal periods (e.g., [18,28–30]). It should
be noted that this observation was first made much earlier by several
researchers using non-probabilistic approaches, such as McVerry [5]
and Beck and Jennings [10].

A system identification technique may infer an important number of
parameters by using recorded response. However, not all inferred va-
lues may be reliable. For example, in buildings the product of the modal
participation factor and modal shapes decreases rapidly with increasing
mode. Therefore, the contribution of higher modes to the total recorded
response tends to decrease as the mode number increases. This means
that there is a need for cut-off criteria for inferred parameters that may
not be reliable because they correspond to modes of vibration that do
not significantly contribute to the total response. But unreliable inferred
modal properties may also occur for lower modes. For example, in small
magnitude earthquakes the first mode may not be sufficiently excited,
and even though the product of the modal participation factor and

modal shape for the first mode may be large the modal response may be
almost negligible or have a small signal to noise ratio as noise tends to
be larger for low frequencies in acceleration sensors leading the system
identification technique to infer some values, but they may not be re-
liable. In these cases, in addition to quantifying the variability in the
inferred damping ratios it is necessary to discriminate which values are
reliable and from those which are not.

This study is part of an investigation aimed at evaluating damping
ratios inferred from the seismic response of buildings. In a first paper,
the authors evaluated the damping ratio of tall buildings for both the
fundamental and higher modes of vibration [8]. The paper showed that
damping ratios tend to decrease with increasing building height, and
that, once a threshold level of response is exceeded, damping ratios
remain approximately constant with increments in seismic response as
large are five- or ten-fold, provided that the building remain elastic or
nearly elastic. In a second paper, the authors analyzed a larger dataset
of buildings in order to provide damping recommendations for higher
modes [7]. That study showed that damping ratios of higher modes are
typically larger than those of fundamental modes of vibration and that
damping ratios of higher modes increase approximately linearly with
increasing frequency. This paper is aimed at developing metrics to ex-
amine the reliability of the inferred modal damping ratios based on (1)
the capacity of the ground motion to excite the modes being identified;
(2) the relative contribution of the different modes to the total seismic
response; and (3) the sensitivity of the computed structural response to
changes in modal damping ratios. Based on these concepts, which are
familiar to most structural engineers, a series of metrics are developed
to quantify the reliability of the damping ratios, and to develop
screening tests to identify inferred damping ratios that are not reliable
by imposing limiting values on these metrics.

2. Variability in identified parameters

There are many available different system identification techniques
to infer dynamic properties of buildings from seismic records. In some
cases, for the same building and for the same earthquake, different
investigators using different system identification techniques may result
in different results. In order to illustrate this situation, this section
presents results of inferred dynamic characteristics for three buildings
obtained by different investigators to show that identification of
damping ratios is more challenging than identifying modal frequencies.
Please note that the details of the system identification techniques
employed by these different investigations are not the focus of this
section. The interested reader can go to the cited papers for details
about them, or to Section 3 for details about the technique employed in
this investigation. The main question that is discussed in this section is
the following: Why identifying damping ratios is harder than identi-
fying periods? Although this is also related to the particular system
identification method used, the main reason is that the seismic response
of buildings is more sensitive to changes in modal frequencies than it is
to changes in modal damping ratios and therefore there is a much
smaller variability in identified modal frequencies than in inferred
modal damping ratios.

The first building corresponds to the 1900 Avenue of the Stars
building located in Los Angeles, California (Fig. 1, left). The building
has height of 113m, with 27-stories above ground level and one
basement. It has a rectangular shape of 63m by 33m, and its lateral
resistant system consists of steel moment-resisting frames. This build-
ings was designed in 1969, and instrumented since its construction. The
structural response during the 1971 San Fernando earthquake was
captured by sensors in the building. This was one of the first buildings
whose response was recorded during an earthquake, so it captured the
interest of people working on system identification at the time. Among
these researchers were Hart and Vasudevan [31], and McVerry [5], who
analyzed the building using two different techniques. Hart and Vasu-
devan used a simplified method based on the peaks of the roof-to-
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ground transfer function, McVerry used a parametric modal mini-
mization technique in the frequency domain. For this investigation, all
the buildings were analyzed using the parametric modal minimization
method in the time domain described in Section 3.

The second building to compare is the Pacific Park Plaza building,
located in Emeryville, California (Fig. 1, center). This building was built
in 1983, and has 30 stories with a total height of 95m. The building has
a Y shape in plan and has shear walls from the foundation to the second
floor at the central core and at the three wings. Above the second level,
the lateral resistant system consists of ductile moment resistant re-
inforced concrete frames. The building was instrumented in 1985 by the
United States Geological Survey, with 21 channels distributed in the
30th, 21st, 13th, and ground floors. The building was shaken by the
1989 Loma Prieta earthquake, and its recorded response has been used
by several researchers to infer its dynamic properties. The most relevant
studies on this building correspond to Celebi [16], and Safak and Celebi
[15]. Both studies use a discrete time linear filters method for system
identification [12]. Reinoso and Miranda [32] also studied this building
using the parametric modal minimization method in the time domain,
however, they used a simplified continuous cantilever beam model as
the structural model and further simplified the model by constraining
the damping ratios to be equal for all modes, as they were primarily
interested in estimating acceleration demands in buildings with only
three parameters: fundamental period T1, damping ratio ξ , and lateral
stiffness ratio α.

The third building is one of the buildings of the Embarcadero
Center, located in the financial district of San Francisco, California
(Fig. 1, right). The building has 47 stories above ground level and two
basements, with a height of 172m. The lateral resisting system consists
of steel moment-resisting frames in the longitudinal direction and a
dual system that combines moment-resisting frames and eccentrically-
braced frames in the transverse direction. The building has an ap-
proximately rectangular plan shape, with setbacks in the transverse
direction at levels 39 and 41. The building was constructed in 1978,
and instrumented in 1985 with 18 accelerometers on 7 levels. The re-
corded response of this building during the 1989 Loma Prieta earth-
quake was studied in the previously mentioned studies of Celebi [16],
and Reinoso and Miranda [32]. It was also more recently studied by
Bernal et al. [18], who used a subspace method to perform the system
identification.

Tables 1–3 show the results obtained by all the aforementioned
investigators for the damping ratio and period of the fundamental mode
of all the buildings – in both directions. The tables also indicate the
difference in the identified properties with respect to those obtained in
this investigation. Even when the different investigations use the same
data, it can be seen that there is significant variability in the results. The
variability, however, is several times higher for the inferred damping

ratios than for the inferred fundamental periods. Taking the results
from this investigation as a reference, the average difference in periods
is only 1.9%, with a standard deviation of 2.5%. However, for damping

Fig. 1. Left: 1900 Avenue of the Stars building. Center: Pacific Park Plaza building. Right: Embarcadero Building (all images from Google Maps, 2016).

Table 1
Results for 1900 Avenue of the Stars.

Study T1 [s] Diff.* ξ1 [%] Diff.*

N-S Direction
Hart and Vasudevan [31] 4.26 −2.5% 5.2 15.6%
McVerry [5] 4.37 0.0% 4.4 −2.2%
This investigation 4.37 – 4.5 –

E-W Direction
Hart and Vasudevan [31] 4.27 0.9% 6.5 160.0%
McVerry [5] 4.23 0.0% 2.2 −12.0%
This investigation 4.23 – 2.5 –

* Difference with respect to this investigation.

Table 2
Results for Pacific Park Plaza.

Study T1 [s] Diff.* ξ1 [%] Diff.*

N-S Direction
Celebi [16] 2.63 −2.2% 11.6 75.8%
Safak and Celebi [15] 2.50 −7.1% 13.0 97.0%
Reinoso and Miranda [32] 2.60 −3.3% 6.0 −9.1%
This investigation 2.69 – 6.6 –

E-W Direction
Celebi [16] 2.63 −3.3% 15.5 162.7%
Safak and Celebi [15] 2.50 −8.1% 13.0 120.3%
Reinoso and Miranda [32] 2.60 −4.4% 4.0 −32.2%
This investigation 2.72 – 5.9 –

* Difference with respect to this investigation.

Table 3
Results for Embarcadero Building.

Study T1 [s] Diff.* ξ1 [%] Diff.*

N-S Direction
Celebi [16] 5.26 0.0% 2.5 92.3%
Reinoso and Miranda [32] 5.3 0.8% 2.5 92.3%
Bernal et al. [18] 5.26 0.0% 1.4 7.7%
This investigation 5.26 – 1.3 –

E-W Direction
Celebi [16] 6.25 0.3% 3.7 94.7%
Reinoso and Miranda [32] 6.25 0.3% 1.0 −47.4%
Bernal et al. [18] 6.25 0.3% 1.7 −10.5%
This investigation 6.23 – 1.9 –

* Difference with respect to this investigation.
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ratios, the average difference across buildings is 64.5%, with a standard
deviation of 54.9%. In other words, there is a general agreement on
what is the fundamental period of these structures - with discrepancies
that are within a tolerable margin - but are larger differences on the
damping ratios. Moreover, without further analysis, it is not possible to
tell which of the reported damping ratios is closer to the true value for
the different buildings.

There are several questions that arise from this simple comparison
exercise: Why it is easier to identify periods than damping ratios?
Which of these reported damping ratios is more reliable? Is it possible
to define an interval that is likely to bracket the true damping ratio of
the building? This paper addresses these questions. The reliability is
estimated based on the level of modal excitation, the relative con-
tribution of the different modes to the structural response, and on the
sensitivity of the objective function to small changes in damping ratio.
Metrics to quantify the reliability of the inferred damping ratios are
then developed, and a series of reliability tests are proposed. Finally, an
example of the different reliability tests is presented using the actual
records of a 32-story building subjected to 8 different earthquakes.

3. System identification: parametric modal minimization in the
time domain

The modal minimization method is a parametric system identifica-
tion technique that consists in finding the optimal set of parameters that
will make a mathematical model of the structure reproduce the re-
corded response with the least error. The fit can be done in either time
domain (e.g., [10]) or in frequency domain (e.g., [11]), without sig-
nificant differences in the results when the same building model is used
and the response is entirely elastic. If this method is combined with a
modal response-history analysis, then the modal parameters that are
identified directly correspond to the modal damping ratios, modal
periods, and products of mode shapes and modal participation factors
that an engineer should use in order to reproduce as best as possible the
recorded response of the building. In other words, it has the advantage
that the method of analysis used in the system identification is the same
as the most commonly used method to analyze buildings in current
engineering practice, that is, a linear elastic classic modal analysis. For
this reason, it was the method chosen for this investigation. Here, the
process was carried in the time domain, adapted from [10], because
when used in the frequency domain it may lead to overestimation of
damping ratios in the presence of even mild nonlinearities, even if this
occurs in a short segment of time in the record.

The first step is to define a mathematical model of the structure. The
second step is to find the parameters that minimize the error of the
response predicted by this model. The objective function J is defined as
the least-squares difference between the recorded relative acceleration
ü and the one predicted by the model ̂ü , normalized by the recorded
relative acceleration:
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where θ is the set of parameters that govern the mathematical model of
the structure, Nsen is the number of sensors above ground, τ is the length
of the digital records, and tΔ is the time step of the records. This ob-
jective function provides an overall measure of fit between the com-
puted and measured relative accelerations across all the record and
giving equal weight to all sensors. The purpose of the normalization of
the squared error at each sensing location by introducing the denomi-
nator in Eq. (1) is to provide an equal weight to each sensor location.
Please notice that if this normalization is not used, the system identi-
fication would converge toward parameters that minimize the differ-
ence between computed and measured relative accelerations in sensor
locations experiencing larger relative accelerations which tend to in-
crease with increasing height and therefore, in general, would tend to

produce better fits for sensors located higher in the building than those
in the lower part of the building. The system identification problem
then consists in finding the optimal set of parameters θ, that minimize
J .

In this work, a linear-elastic model, considering classical damping
(i.e. mode shapes are real-valued and orthogonal with respect to the
damping matrix [33]), and assuming a fixed condition at the base was
employed. Since the model is elastic, its dynamic properties remain
constant in time, that is, we use a time-invariant system identification.
Furthermore, since the model is assumed to have a classical damping,
the system of equations of motions can be decoupled and the predicted
structural response was computed using modal superposition:
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where ̂u t¨ ( )j is the predicted relative acceleration at location j at time t ;
Γn is the modal participation factor of the −n th mode, ϕnj is the mode
shape of the −n th mode evaluated at location j; Nm is the number of
modes considered in the analysis, and D t¨ ( )n is the response of a single-
degree-of-freedom system of unit mass, period Tn, and damping ratio ξn,
when subjected to the ground motion acceleration at the base u t¨ ( )g .

The reason for using this model is that currently it is the most
common mathematical model employed in engineering practice for the
seismic analysis buildings. Therefore, the identification results corre-
spond directly to the modal damping ratios that a structural engineer
should use in order to reproduce, as best as possible, the measured
structural response when using the ground motion recorded at the base
as input. If only Nm modes are considered in the structural model, and if
the structure is assumed to be at rest at =t 0, then the parameters to
identify are given by:
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where Tn and ξn are the period and damping ratio of the −n th mode of
vibration, respectively; ϕΓn nj is the product of the modal participation
factor and the mode shape of the −n th mode evaluated at the location
of the −j th sensor, respectively. For more details on the optimization
problem, such as initial set of parameters, or optimization constraints,
the reader is referred to [8].

4. Building LA-32: example of an actual building subjected to
several earthquakes

This section describes a 32-story residential building located in
downtown Los Angeles that will be used as an example in the sub-
sequent sections. The building is monitored by the California Strong
Motions Instrumentation Program (CSMIP station No. 24288) and was
selected because it has been shaken by multiple earthquakes, but also
because its seismic response has an important contribution from higher
modes. Therefore, it provides an opportunity to assess the reliability of
damping ratios of higher modes inferred from different earthquakes.
The building base dimensions are 38m by 27m, and has a total height
of 103m. The vertical carrying load system is composed of lightweight
concrete slabs, supported by steel beams and columns. The lateral load
resistant system consists of steel moment resistant frames located in the
perimeter of the building. Although the building was designed in 1967,
its current digital instrumentation system was installed in 2005. The
system comprises 16 accelerometers at 5 different levels in the building,
and has recorded 8 different earthquakes. Fig. 2 shows schematics of
the building and the location of the different sensors. Due to space
limitations, only the results for the EWref direction are discussed here.
Table 4 shows the year, magnitude, distance to epicenter, and peak
ground acceleration in the EWref direction of the different earthquakes
recorded by this station.
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5. Reliability metrics and screening tests

To be able to identify any parameter of the structural model, such as
a modal damping ratio, then the parameter has to have a noticeable
influence in the measured structural response. In other words, it is not
possible to reliably estimate a parameter related to an aspect of the
dynamic response that is not clearly observable. Therefore, the relia-
bility of the identified damping ratio of, say, the −n th mode, will
depend on the level of contribution of the −n th mode to the total
structural response. Damping ratios of modes that contribute sig-
nificantly to the dynamic response of the structure will be easier to
identify than those from modes that contribute less to the total re-
sponse. More importantly, understanding which modes are primarily
participating in the structural response allows to question the reliability
of the identified parameters of the modes that are not. A system iden-
tification method will yield parameters of as many modes as specified
by the user, that is, the parameters that minimize the objective func-
tion, but some of the identified parameters may not be reliable as they
may not correspond to those in the structure. For example, if the seismic
response of a given building is primarily governed by the first 3 modes
but the structural model employed in the identification considered 10

modes, the damping ratios beyond the third mode may not be reliable.
This investigation proposes 3 metrics to measure the reliability of

damping ratios inferred from the seismic response of buildings. These
metrics evaluate 3 different aspects that determine how much a mode is
participating in the structural response. The first metric, namely the
Dynamic Amplification Factors, measures the capacity of the recorded
ground motion to excite the first two modes of the building. The second
metric, called the Arias Modal Contribution, measures the relative
contribution of the modes included in the structural model to the total
structural response. Finally, the third metric, Reliability Intervals,
measures the sensitivity of the response to changes in modal damping
ratio, providing an interval of damping ratios that is likely to bracket
the true damping ratio of the building.

Once these metrics are computed for all the identified modal
damping ratios, they can be compared to threshold values than can be
used to establish screening tests. If all the metrics are within acceptable
values, and therefore pass all three screening tests, then the damping
value is deemed to be reliable. The subsequent sections explain the
different reliability metrics and their corresponding limiting values to
be used as screening tests. Please note that these thresholds are arbi-
trary. They were defined after the inspection of numerous damping
ratios inferred from multiple buildings and earthquakes, but other
limiting values could be used. As with other limiting criteria, there is a
tradeoff between using a relaxed criteria that keeps more data but less
reliable, and a stricter threshold that yield less but more reliable results.
The limits proposed in this investigation were defined to have stricter
limiting values, as it was decided that it was better to reject modal
damping ratios that might be correct than to accept damping ratios that
are incorrect.

There are many other factors that are known to affect the variability
of the identified damping ratios, such as the parameters involved in the
digital processing of the signals, the time window employed to perform
the identification, or errors inherent to the system identification

Fig. 2. Building schematics and sensor locations for LA-32 (after [34]).

Table 4
Recorded earthquakes for building LA-32-EW.

Earthquake Year Mw Dist. to epicenter (km) PGA (g)

Borrego Springs 2010 5.4 178.0 0.006
Calexico 2010 7.2 340.9 0.007
Chino Hills 2008 5.4 46.4 0.064
Encino 2014 4.4 23.3 0.008
Inglewood 2009 4.7 15.7 0.016
LA Airport 2012 3.7 17.6 0.007
La Habra 2014 5.1 33.8 0.013
Whittier Narrows 2010 4.4 17.8 0.033
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technique employed. The influence of these factors can be found on
several other investigations on the subject (e.g. [13,35–37]). The me-
trics proposed herein aim to evaluate the reliability of damping ratios
from the perspective of how much a mode is participating in the
structural response, all other variables being equal.

5.1. Dynamic amplification factors

It can occur that an earthquake is not capable of significantly ex-
citing the first, or sometimes even the second mode of a building, but it
can still excite its higher modes enough to infer their damping ratios.
For example, for buildings on rock or firm soils, there are typically
much larger spectral ordinates for periods less than 1 s than those larger
than 1 s. Therefore, the dynamic response of tall buildings to this kind
of ground motions will have a significant contribution of higher modes,
but a very small participation of the first (and sometimes the second)
mode. Thus, the parameters inferred for the first mode may not be re-
liable.

The Dynamic Amplification Factors, Rn, are a reliability metric that
are particularly effective at quantifying the level of excitation of the
first two modes. It provides a measure of the amplification of 1%-
damped floor spectral acceleration ordinates averaged in the vicinity of
the modal period in question for the motion recorded at the roof with
respect to those of the motion recorded at the base of the building as
follows:

=R
S T
S T
¯ ( )
¯ ( )n

ar n

ab n (4)

where S T¯ ( )ar n and S T¯ ( )ab n are the average of the 1%-damped floor
spectral acceleration ordinates of the motions recorded at the roof and
at the base of building, respectively, within the period range defined by

T T[0.9 , 1.1 ]n n , plus 0.01 g. The spectral acceleration ordinates are com-
puted using a period interval =TΔ 0.01 s. The purpose of the increment
of the spectral ordinates in 0.01 g is to avoid excessive spectral ratios
when values are close to zero in the denominator. Although this metric
could be applied to any other mode of vibration, it was found that it was
particularly useful in discriminating reliable modal damping ratios of
the first and second mode. For higher modes, other metrics, explained
in the next sections were shown to be better. After careful evaluation of
various alternatives, the cut-off criteria for Rn was established to be:

≥R 2.21 (5)

≥R 1.62 (6)

Fig. 3 shows the roof and base 1%-damped response spectra for all
the earthquakes recorded by building LA-32 in its EW reference direc-
tion. The figure indicates the computed Rn values for each earthquake.
Also, the period windows that define R1 and R2 have been delimited
with vertical dashed lines, and the roof and base spectra within these
windows have been colored to highlight the amplification of the spec-
tral ordinates for the first two modes. From the figure, it can be seen
that the ground motions that caused a dynamic amplification factor for
the first mode larger or equal than 2.2 correspond to the 2010 Borrego
Springs, 2010 Calexico, 2008 Chino Hills, and 2014 La Habra earth-
quakes. The average fundamental period identified under these earth-
quakes is 2.90 s. Under most earthquakes, the period window corre-
sponding to the first mode is centered roughly at 2.90 s, except for 2012
LA Airport and 2010 Whittier Narrows earthquakes, in which the
identified periods for the first mode were 1.82 s and 2.32 s, respectively,
and the identified damping ratio was 30% in both cases. Note that 30%
corresponds to the upper bound of the identification process, meaning
that the optimization algorithm will not look for damping values
greater than 30%. Evidently, the first mode is barely getting excited
under these two ground motions and therefore the periods and damping
ratios obtained are not correct. The values of R1 for these two earth-
quakes are 1.01 and 1.10, respectively, which are well below the

threshold of 2.2, indicating that the damping ratios obtained for the
first mode are not reliable.

5.2. Arias modal contribution

The seismic response of a building can in most cases be correctly
reproduced by considering only a small number of modes (e.g.,
[32,38]). If the structural model employed in the system identification
problem shown in Eq. (1) considers modes that have a negligible con-
tribution to the seismic response, then the results obtained for these
modes may not be reliable. Thus, measuring the relative contribution of
the different modes to the computed seismic response at the different
instrumented levels in the building, and establishing a minimum con-
tribution as a cut-off criteria can provide a way to detect damping ratios
that may not be reliable. To this purpose, the Arias modal contribution
factor, MCn of a given mode (say, the −n th mode) was defined as the
relative contribution, measured in terms of the Arias intensity of the
signal, of the −n th modal response with respect to that calculated with
Nm modes. Mathematically, MCn is calculated as follows:
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where MCn is the Arias modal contribution of the −n th mode; ̂üij is the
relative acceleration computed for the −i th mode of vibration at floor
j; tΔ is the digitization time step of the record; Nm is the total number of
modes considered in the structural model; Nsen is the number of sensors
above ground level; and τ is the number of data points in the record. As
noted by Chopra [39] sd, modal participation factors, by themselves do
not provide information about how much a particular mode is con-
tributing to the total response. Please note that unlike, the modal
contribution factors proposed by Chopra, that correctly account for the
factors in the structure that contribute to the total response, the Arias
modal contribution used here account for factors both in the structure
and in the ground motion that make the contribution of each modal
response to the response parameters being measured.

As an example, Fig. 4 shows the deaggregation of the different
modal components of the computed relative acceleration at the roof of
building LA-32 – described in Section 4 – when subjected to the EW
component of the 2008 Chino Hills earthquake. For this case, it can be
seen that at the roof the third mode provides the highest relative con-
tribution to the response, followed by the second, fundamental, and
fourth modes. The contribution of the fifth mode is considerably smaller
than the rest of the modes, but it is slightly larger than 5% so this mode
would be taken into account. The sixth mode, however, contributes less
than 5% so the inferred damping ratio for this mode would be discarded
in this case since their contribution to the total response is relatively
small. Please note that the Arias modal contributions are computed
considering all the sensors in the building, not just the roof, but in the
figure only the roof response is displayed. Even when the fifth mode
may not be seem to be contributing to the response at the roof, it may
be contributing to the response in other locations due to the distribution
of the sensors along the height of the building. Also, the modal con-
tributions will be affected by the intensity and frequency content of the
earthquake so the different modal contributions will change from
earthquake to earthquake.

5.3. Sensitivity of the objective function

5.3.1. Reliability intervals
In the previous sections it has been shown that the variability in the

identified damping ratios is significantly higher than the variability in
the identified periods. In order to understand why this occurs, it is
necessary to analyze the sensitivity of the objective function to small
variations in periods and damping ratios. Fig. 5 shows the variation of
the objective function with changes in the fundamental period and with
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changes in the damping ratio of the first mode of building LA-32 under
the 2010 Borrego Springs earthquake in the EW direction while keeping
constant the rest of the parameters in the model. For the first mode, the
identified period is T1 =2.85 s and the identified damping ratio is
ξ1 =2.0%. These parameters minimize J , whose minimum can be seen
in the surface shown in Fig. 5. Fig. 6 shows the contour curves of equal

value of J near the minimum of the function, spaced at increments of
1% of the minimum value of J . It can be seen that, near the minimum,
the contours are approximately shaped as elongated ellipses, with their
major axis oriented in the direction of damping. The contour level that
is 1% higher than the minimum value of the function delimits intervals
in damping ratios and periods, which are shown in segmented lines in
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Fig. 3. Roof and ground acceleration response spectrum (ξ =1%) for the E-W direction of building LA-32 for all earthquakes recorded by this station.
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Fig. 6. Any variation in damping ratio or period beyond outside this
contour will cause an increment greater than 1% in the value of the
objective function. In the figure, it can be seen that the range of periods
within this contour curve is approximately from 2.81 to 2.89 s, and that
the difference between these two periods is just 0.08 s, indicating that
the correct value of the fundamental period is within 0.04 s of 2.85 s, in
other words, within an error of ±1.4%. On the other hand, the range of
damping ratios within the 1% contour curve is approximately from
1.1% to 3.4%, and the width of this range is about 2.3%, indicating that
the correct value of the damping ratio is within −0.9% and +1.4% of
2.0%, which corresponds to an error of −45% and +70%. In other
words, incrementing the value of the fundamental period by 0.04 s, an
increment of just 1.4%, produces the same variation in the objective
function as when increasing the damping ratio of the first mode from
2.0% to 3.4% (an increment of 70%). Therefore, for the same effect on
the objective function, an error in the identification of the damping
ratio can be significantly higher than that of the fundamental period.

The larger sensitivity of the objective function defined by Eq. (1) to

changes in modal periods/frequencies compared to that produced by
changes in modal damping ratios, as illustrated in Fig. 6, is partly in-
herent in the selection of this objective function. If a given trial of a
modal period is inaccurate (i.e., it is shorter or longer than the optimum
parameter), and it is used in combination with the optimal/correct
modal damping ratio, then the computed relative acceleration ̂u t¨ ( )j will
be out of phase with respect to the measured relative acceleration u t¨ ( )j
not only throughout the whole history of the records but also in all
sensors, leading to a large increment in the objective function. Mean-
while, for lightly damped structures, when using an inaccurate estimate
of a modal damping ratio combined with an accurate estimate of a
modal period the computed and measured responses will be in phase
but with the incorrect amplitude. This will lead to a much smaller in-
crement in the objective function than the one produced by an in-
accurate modal period. This explains why the variability in damping
ratios inferred from different earthquakes can be significantly higher
than the variability in the inferred periods. The width of these intervals
can be used to measure the reliability of the inferred damping ratios
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Fig. 4. Deaggregation of the contribution of the first six modes to the relative acceleration at the roof, for the EW direction of building LA-32 subjected the 2008
Chino Hills Earthquake.
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since it is a measure of the slope of the objective function produced by
changes in the −i th modal damping ratio. More formally, this width is
a measure of the partial derivative of the objective function with re-
spect to the modal damping ratio in the vicinity of the modal damping
ratio producing the minimum in the objective function.

Table 5 lists the identified damping ratios, reliability interval limits,
and interval lengths for the first mode obtained for all the earthquakes
recorded in building LA-32. Fig. 7 shows the variation of the objective
function with changes in the damping ratio of the first mode in the EW
direction while keeping all the other parameters constant and equal to
their optimal values. It can be seen that the sensitivity of the objective
function to changes in the damping ratio of the first mode, as measured
by the reliability intervals, changes considerably from earthquake to
earthquake. The smallest reliability interval was obtained under the
2010 Calexico earthquake (ξ1 =2.0%), indicating that the damping
ratio of the first mode, under this specific ground motion, has the lar-
gest effect in the objective function and therefore is the most reliable

estimation of the damping ratio of the structure. From the figure, there
is an evident correlation between the length of the reliability interval
and the consistency in the obtained damping ratios. For example,
damping ratios obtained under earthquakes with an interval length
smaller than 3%, in ascending order are: 2.0% damping for the 2010
Calexico, 2.0% for the 2014 La Habra event, 2.4% for the 2008 Chino
Hills event, 2.0% for the 2010 Borrego Springs event, and 2.3%
damping for the 2009 Inglewood event. From these results, it can be
concluded that the damping ratio of the structure is between 2.0% and
2.4%. The opposite is true for those earthquakes with wide reliability
intervals: 3.5% (2014 Encino), and 30% (2012 LA Airport and 2010
Whittier Narrows), where the objective function is not very sensitive to
changes in the damping ratio of the first mode and therefore leading to
less credible results with a higher dispersion. The reliability intervals
are related to both the level excitation and to the relative contribution
of the mode being analyzed. In general, modes with low MC values will
tend to have wide reliability intervals, while modes with high R values
will tend to have narrower intervals.

5.3.2. Enhanced reliability intervals
The previous section described a method to quantify the reliability

of the inferred damping ratios by measuring the sensitivity of the ob-
jective function to small variations in the modal damping ratios.
However, in most cases the objective function, as defined in Eq. (1), will
be more sensitive to parameters that govern the fundamental mode
than those that control higher modes simply because the fundamental
mode typically has a larger contribution to the response. Therefore, it is
necessary to also have a parameter that is more sensitive to the specific
response of the mode being analyzed, rather than to the sum of all
modes.

To obtain reliability intervals that are more sensitive to the response
of higher modes, it is necessary to redefine the objective function in
order to make it more sensitive to small variations of modal damping
ratios in higher modes. A way to achieve this is to perform an additional
system identification with a single parameter to be identified, corre-
sponding to the damping ratio of the mode whose reliability is being
measured. All the other parameters – periods, damping ratios and mode
shapes – are kept constant and equal to those initially identified. Since
there is only one variable involved in this additional system identifi-
cation scheme only one output sensor location is required. The recorded
response at the roof is selected because it always contains information
about higher modes, avoiding possible node locations, and because
practically all buildings have sensors located at the roof. To isolate the
contribution of the mode being analyzed, the response at the roof was
filtered using a bandpass filter that removes the frequency content of
the signal that is not within the vicinity of the modal frequency iden-
tified for this particular mode. For the same reason, the ground motion
record was also filtered within the same frequency range. Using the
filtered ground motion as input, an optimization routine was employed
to find the damping ratio that would make the system best reproduce

Fig. 5. Normalized objective function as a function of the modal damping ratio
and modal period of the fundamental mode for the LA-32 building under the
2010 Borrego Spring earthquake, in the EW direction. The star indicates the
minimum value of the objective function.
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Fig. 6. Contour levels near the minimum value of the normalized objective
function for the damping ratio and period of the first mode for the LA-32
building under the 2010 Borrego Spring earthquake, in the EW direction. The
star indicates the location of the minimum value of the objective function.

Table 5
Identified first mode damping ratios, reliability interval limits, and interval
length for all the earthquakes recorded in building LA-32-EW.

Earthquake ξ1 [%] ξLower [%] ξUpper [%] Interval length [%]

2010 Borrego Springs 2.0 1.1 3.3 2.2
2010 Calexico 2.0 1.9 2.0 0.1
2008 Chino Hills 2.4 1.9 3.0 1.1
2014 Encino 3.5 0.8 14.6 13.8
2009 Inglewood 2.3 1.3 4.2 2.9
2012 LA Airport 30.0* 19.7 Capped –
2014 La Habra 2.0 1.7 2.5 0.8
2010 Whittier Narrows 30.0* 10.3 Capped –

* 30% was set as an upper bound, all damping ratios larger than 30% are
considered to be unreliable.
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the filtered response at the roof. Please note that this equivalent to
finding the damping ratio of an SDOF system with periodTn subjected to
the filtered ground motion, and having its response amplified by

ϕΓn nroof , that would best reproduce the filtered recorded response at the
roof, where Tn and ϕΓn nroof correspond to the identified period and ef-
fective mode shape at the roof for the mode being analyzed. The ob-
jective function of this simple identification process was plotted against
the modal damping ratio, and a new reliability interval was computed.
Since there is only one variable involved, the objective function is now
very sensitive to changes in the damping ratio. For this reason, the
boundaries for this new intervals were set as those damping values that
cause a variation of less than 50% of this new objective function, in-
stead of the previous 1%. This interval is defined as the enhanced re-
liability interval (ERI) of the inferred damping ratio. Note that the
aforementioned procedure was only used to quantify the reliability of
the damping ratios identified originally. A detailed, step-by-step guide
on how to compute the enhanced reliability intervals is detailed below.

5.3.3. Steps to compute the enhanced reliability intervals

i. Perform the system identification

The identification was done using the parametric minimization
method described in Section 3. Then for each of the identified modal
damping ratios, steps 2 to 6 were followed.

ii. Define the bandpass filter’s corner frequencies

The lower and upper frequencies ( fL and fU , respectively) of the
bandpass filter were defined as:

= +−f f f0.5·( )L n n1 (8)

= + +f f f0.5·( )U n n 1 (9)

=f f 2L 11 (10)

=f f2U NNm m (11)

where fn is the identified frequency of the −n th mode ( =f T1n n), and
fL1 and fUNm

are the lower and upper cutoff frequencies for the first and
last modes being considered, respectively.

iii. Filter the recorded ground motion and the recorded accelera-
tion at the roof

A Butterworth digital filter of order 3, with passband < <f f fL U
was applied to the ground and roof acceleration records. These filtered
records at ground g( ) and roof R( ) levels are further referred as üg

F and
üR

F , respectively.

iv. Compute the response of an equivalent SDOF

The response of an equivalent single-degree-of-freedom system with
period Tn and damping ratio ̂ξn subjected to the filtered ground motion
acceleration record was computed. The response was the amplified by
the identified effective mode shape ϕΓn nroof of the mode being analyzed.

This response is denoted as ̂üR
F
.

v. Define and solve the secondary optimization problem

The secondary optimization problem is defined by the following

Fig. 7. Variation of the normalized objective function J with changes in the damping ratio of the first mode for building LA-32-EW, during all the earthquakes
recorded by this station.
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objective function:

̂∑= −
=

J u k t u k t[ ¨ ( Δ ) ¨ ( Δ )]s
k

τ

R
F

R
F

1

2

(12)

where τ is the number of points in the records, and tΔ is the time step.
Given the small number of parameters involved, the solution to this
problem is extremely simple to obtain, as it can be quickly solved by the
following brute-force approach. To solve it, the damping ratio ̂ξn of the
SDOF system was varied over a wide range of values. For each value of

̂ξn the objective function of the secondary optimization problem Js was
evaluated using Eq. (12). The optimal value of ̂ξn was found as that
minimizes the value of Js.

vi. Compute the enhanced reliability interval

The values of Js computed in step (v) were normalized by its
minimum value Js

min. The enhanced reliability intervals were then
computed as the range of damping ratios that caused Js to vary in less
than 50% of its minimum value.

5.3.4. Maximum allowable enhanced reliability intervals
The enhanced reliability intervals (ERI) quantify the contribution of

each mode to the structural response by measuring the sensitivity of the
objective function to small variations of the modal damping ratios. In
this screening test, a maximum length of the enhanced reliability in-
terval was established to determine which damping ratios would be
considered in further analyses. Since higher modes in most cases will
have a smaller contribution to the total structural response, the sensi-
tivity of the objective function to modal damping ratios will typically
decrease with mode number. Consequently, the maximum allowed in-
terval length was set as a function of the modal frequency. Since low-
rise structures tend to have higher fundamental frequencies, the cutoff
for the fundamental mode was set to be stricter than for higher modes.
The maximum allowed ERI lengths are shown in Fig. 8. Please note that
the length measures the difference between the damping ratios that
cause an increment of 50% of the minimum value on the objective
function of the secondary optimization problem Js defined in Eq. (12),
therefore the interval length has the same units than the damping ratio
(i.e., non-dimensional or percentage). Only the damping ratios of
modes having an enhanced reliability interval length smaller than the
maximum allowed limits were considered in further analyses.

6. Example

This section provides an example of how the different reliability
screening tests are applied after the initial system identification results
are obtained. For this example, the EW direction of building LA-32 –
described in Section 4 – is used. The dynamic properties of the buildings
were inferred using the parametric minimization method along with a
planar model of the building. The results of the identification for all the
different earthquakes can be seen in Fig. 9, which plots the identified
modal damping ratios against their corresponding modal frequencies.
The identified modal periods, frequencies, and damping ratios, as well
as their corresponding amplification factors (R), Arias modal con-
tribution ratios (MC), and enhanced reliability interval lengths (ERI),
are listed on Table 6.

Fig. 9a shows the raw data obtained from the identification. It can
be seen that there are clusters of data points, corresponding to the
damping ratios at the different modal frequencies. At about 0.5 Hz,
however, there are two points with damping ratios of 30%, which were
obtained for the 2010 Whittier Narrows, and for the 2012 LA Airport
earthquakes. As mentioned in Section 5.1, this damping value corre-
sponds to the upper bound of the identification process, meaning that
the optimization algorithm will not look for damping values greater
than 30%. Obviously, these two values cannot correspond to the true

value of the damping ratio of the fundamental mode, as they are most
likely the byproduct of the low sensitivity of the objective function to
variations in the damping ratio of the fundamental mode for those
particular earthquakes because the fundamental mode is practically not
excited and at the fundamental frequency the building experiences an
almost rigid-body behavior. These two earthquakes are not capable of
exciting the fundamental mode enough to infer a reliable damping
value out of the records. Fig. 9b shows the same information as Fig. 9a,
but in this case those data points that do not pass the amplification
factor reliability tests are highlighted in blue. It can be seen that the two
aforementioned outliers are correctly identified as not reliable and
screened out by this reliability screening test. Moreover, the dynamic
amplification factors screening test also filters out two more damping
ratios from the fundamental mode and one from the second mode – this
is better appreciated in Fig. 9c, where results are plotted at a reduced
vertical scale – significantly reducing the variability in the results of the
fundamental mode. Fig. 9c also highlights in red1 those data points that
do not pass the Arias modal contribution screening test. This screening
test identifies all the results of all those modes contributing less than 5%
of the total structural response. It can be seen that this screening test
reduces the dispersion obtained for the fifth mode and eliminates al-
most all the data points obtained for the sixth mode, most of which
visually appear strange. Fig. 9d highlights in magenta all those points
that do not pass the enhanced reliability interval screening test. It can
be seen that this test removes the reminder of points coming from the
sixth mode, but one. Although not shown in the figure, this last test also
rules out the aforementioned 30% damped points for the fundamental
mode. Finally, only those points that have passed all the reliability
screening tests are reported (Fig. 9e).

7. Summary and conclusions

This paper evaluated the reliability of modal damping ratios in-
ferred from the measured seismic response of buildings using para-
metric system identification methods. It was shown that different au-
thors often report different identified values for buildings being
analyzed under the same earthquake, that is, using the same data but
using different identification methods. These differences were sig-
nificantly larger in the reported damping ratios than in the reported
modal periods.

Three different metrics to assess the reliability of the results and to

Fig. 8. Maximum allowable length of the enhanced reliability intervals.

1 For interpretation of color in Fig. 9, the reader is referred to the web version
of this article.
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screen out those deemed not to be reliable were presented: The dy-
namic amplification factors, Arias modal contribution, and enhanced
reliability intervals. The dynamic amplification factors provide a mea-
sure of the amplification of 1%-damped floor spectra acceleration or-
dinates averaged in the vicinity of the identified modal periods for the
recorded response at the roof with respect to those of the motion

recorded at the base of the building. This metric provides information if
the earthquake provides enough excitation in the vicinity of a particular
mode to generate a response of that mode that is strong enough to allow
a reliable identification of the modal damping ratio. This metric can be
used on any mode, but it was found that this particular effective for
identifying damping ratios of the first and second modes of the

(a) Raw data. (b) After dynamic amplification factors test.

(c) After Arias modal contribution test.                            (d) After enhanced reliability intervals test.

(e) Final results after the application of all tests.

Fig. 9. Example of implementation of reliability screening tests on building LA-32-EW.
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structure that may not be reliable in situations when they are not suf-
ficiently excited by the earthquake. The Arias modal contribution ratio
uses the Arias intensity of a modal response to measure the relative
contribution of each mode to the total response. This metric was found
particularly useful in identifying higher modes that are not contributing
significantly to the total response at the location of the sensors and
therefore, damping ratios identified for these modes may not be reli-
able. Finally, the reliability intervals measure the sensitivity of the
objective function to small variations in the damping ratio. It was found
that the objective function can be significantly more sensitive to var-
iations in damping ratios than to variations in the modal periods, which
explains the larger variability in the results for damping with respect to
that obtained in periods. A method to obtain reliability intervals that

are more sensitive to the response of higher modes, called enhanced
reliability intervals, was also presented. Reliability screening tests were
developed based on these three metrics. Using a 32-story building as an
example, it was shown that these tests are capable of detecting and
screening out unreliable results in order to keep those deemed reliable.

The three metrics can be applied to the results of any system
identification technique capable of determining modal periods,
damping ratios, mode shapes, and modal participation factors, provided
that the input to the system (ground motion at the base of the building)
has been recorded. Please note that although the Enhanced Reliability
Intervals (ERI) metric is based on the “Reliability Intervals” method –
which requires measuring the sensitivity of the objective function to
changes in damping ratios and therefore is applicable only to Prediction
Error Methods (e.g., Modal Minimization [10], ARX [40], ARMAX [40],
Discrete-Time Filters [12], etc.) – ERI are calculated based on a sec-
ondary SDOF system and therefore can be applied to the results of any
system identification method that satisfies the aforementioned re-
quirements.
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Generalized Random Decrement

RYOn~~ai~i~~n~i~e~~n~ Method for Analysis of
Fellow ASME Vibration Data

B. A. Zeldin

Research Associate. The Random Decrement method used in system identification for analysis of random

vibration data is considered from a rigorous mathematical perspective. It is shown

Department of Mechanical Engineering, that the Random Decrement signature deviates from the system free vibration curve

MS 321, of an associated linear system. unless the corresponding input excitation is white.

George R. Brown School of Engineering, The error induced by approximating the system excitation by a white noise process

Rice University is examined. Further, a generalized Random Decrement signature is introduced: it

Houston, TX 77251 is used to estimate efficiently the auto-correlation function of an ergodic Gaussian

random process. Several examples are discussed to elucidate the theoretical develop-

ments.

1 Introduction erroneously, the ensemble aver~~ng concept us:d by Caughey

.. and Stumpf (1961) for determInIng the nonstatlonary random

Th.e Rand?m ,Decrement. me~hod has been. devel~ped. m m- response of linear systems with the time-averaging of ergodic

dustnal appllcatl.ons ~or estImatIng, from pertme?t vI~ratlon re- processes in the Random Decrement method and questioned the

cords, the free vIbratIon curve~ of r.ando~ly exclt.ed lIn~ar sys- validity of some of the results presented in Caughey and Stumpf

tems..A.broad cl~ss of s~stem Identlfica~lon techmques IS based (1961). Note that, nevertheless, the misconceived use of the

on t~IS. mfon:natlon. ThIs method was Introduced, on a rather Random Decrement signature as the system free vibration curve

h.eunstlc bas~s, ~y Co~e (1971, 1973) who sought a system has continued in engineering applications (Ibrahim, 1984; Yang

sIgnature. w~lch IS no~ mfluenc~d by the parameters of th.e ran- et al., 1985; Jeary 1986; Bedewi and Yang, 19~7; Tamura,

~om exc~tatlon. .Speclficall>:, gl~en a record of an ergodic sta- 1996).
tl?nary time s~nes x(t) which IS relat~d t~ the forced ran.dom This paper aims to clarify some theoretical apd computational

~Ibratlon of a linear system., the determInatIon o~ the free vlbra- issues regarding the Random Decrement methbd. An approach

tIon curve of the s~stem IS .pursued by. selecting a reference is introduced to show that the Random Decrement signature

le~el Xo a?d record!ng ~he times at which the record cross~s can not be equal to the system free vibration curve if the random

this level m both. directions. Then, an ensemble of records IS excitation is not white. Indeed, every response signature associ-

prod~ced ~y cuttlng-o~f ~~e .s~gments ~f the r~cord up to the ated with a linear system is influenced by the parameters of the

crossIng tlm.e, and re-m~tlallzl~g the time ~IS; t~e Random input excitation. Further, the error induced by the commonly

Decrement signature Dxo IS obtaIned by averagIng thiS ensemble used assumption that the excitation is white is analyzed, and

of generated records. The obtained "free vibration curve" can, the convergence of the Random Decrement signature to the

then, be used to identify the parameters of the associated linear system free vibration curve as the excitation tends to a white

system (Cole, 1973; Ibrahim 1977, 1984; Jeary, 1986; Tamura noise process is studied. Finally, a new Random Decrement
et al., 1995; Marukawa, 1996; Kareem and Gurley, 1996). Sev- signature is proposed for estimating the auto-correlation func-

eral similar procedures for estimating approximately the &yste~ tion of an ergodic process. Several examples are considered to

free vibration curves have been proposed under the genenc elucidate the theoretical developments.

name of the Random Decrement method.

Vandiver et al. ( 1982) presented an elementary mathematical .

justification for the application of the Random Decrement 2. Ra?dom Decrement Signature and System Free

method for analyzing ergodic time series. The Random Decre- Vibration

ment signature Dx. was formally defined as In conjunction with the preceding comments and to reflect

on the point that the Random Decrement signature is influencedDx.(t" t2) = E[X(t2) 1 X(tl) = Xo], (1) by the parameters of the colored excitation, two single-input-

where E [ I] denotes the conditional expectation operator. For a single-output li?ear systems with transfer fun~tions HI (":') and
G . ( ) Eq ( 1 ) . Id H2 «(,) are consIdered. If these systems are excited by stationary

ausslan process x t . Yle s .. f .
random processes wIth spectral density uncUons

Dx.(r) = XoR,(r)/R,(O), (2) S".«(,) = IH2«(,)12, (3)

where R,( r) is the auto-correlation function of the signal x( t).

Also, Vandiver et al. (1982) pointed out the obvious weak- and

nesses of the arguments of references (Cole 1971, 1973; S «(,) = IH «(,)12 (4)

Ibrahim 1977) and showed by using Eqs. (1) and (2) that the "2 I,

Random Decrement signature Dxo is proportional to the signal respectively, white noise input with unit spectral density can be

auto-correlation function R, ( r) rather than to the syste~ free assumed for the augmented systems shown in Fig. 1 (a) and
vibration curve. However, Vandiver et al. (1982) associated, Fig. l(b), respectively. Note that in this case the responses

x,(t) and X2(t) of the combined systems are stochastically

- equivalent and have identical second order characteristics.

Contributed by the Technical Committee on Vibration and S.ound fo! publica- Therefore an

y res p onse signature, in particular the Randomlion in Ihe JOURNAL OF VIBRAll0N AND ACOUSllCS. Manuscnpt received Aug. , . .. .
1996. Associate Technical Editor: R. Ibrahim. Decrement signature, cannot distInguish the system parameters
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from the excitation parameters using the response record alone. ~ -6 -4 -2 0 2 4 6

This conclusion is consistent with Eq. (2) for the Gaussian
case, since in this case the Random Decrement signature is TIME LAG, see

proportional to the auto-correlation function which represents
a combination of the system and excitation parameters. Fig. 2 Auto-correlation function versus time lag; various values of 'Y

Often, processes used in engineering practice have spectra

which are "broad" compared to the system transfer function.

In this case assuming that the system excitation is a white noise A proof of this property is given in Appendix A. Thus, under

process is a good approximation; this observation, perhaps, ex- merely weak conditions the auto-correlation function of the

plains the moderate success of the Random Decrement method response of a linear system driven by an arbitrary stationary
in certain applications. In this sense, if the system excitation is excitation tends absolutely and in the mean square sense to the
colored and the Random Decrement signature is assumed to auto-correlation function of the white noise response of the
represent the system free vibration curve, the error induced same system. Correspondingly, the deviation of the Random
by this simplification must be properly evaluated. A rigorous Decrement signature from the system free vibration curve be-

treatment of a white noise process as a generalized stochastic comes negligible; the rate of this convergence depends on the

process is given by Gel'fand and Vilenkin (1964) by extending convergence of the colored excitation to a white noise process.

the theory of generalized functions to the random case. In this Note that linear systems with proper rational transfer functions

paper, however, the simplified concept of a broad-sense white satisfy the conditions of Eqs. (6) and (7). Equations (8) and

noise process (Wong, 1971) is used in conjunction with a sec- (9) provide useful explicit bounds on the expected error of

ond order analysis of the Random Decrement method. Specifi- the white noise approximation. To illustrate the above property
cally, the discrepancy between the process f(t) and a wide- consider the following example.
sense white noise process w(t) of power A 2 is represented by
the norm Example 1. Assume that the input excitationf(t) has auto-

[ correlation function and associated spectral density function

IIf(t)-w(t)II~=27r ~(1+w2)-aIA2-s,(w)12dw, (5) 7r

( Itl )- RAt) = - exp - - (10)

where, since SAw) -+ 0 as W -+ 00, the parameter a must be 'Y 'Y

strictly larger than 0.5 for the integral in Eq. (5) to be well
defined. Further, one can prove the following property regarding and
the convergence of the Random Decrement signature to the free 1

vibration curve. SAw) =, -00 < W < 00, (11)

W2'Y2 + 1

Property. Let x,(t) and xw(t) be the stationary responses

of a linear system with the transfer function H(w) to colored respectively. The auto-correlation function of Eq. (10) and the
random excitationf(t) and to white noise w(t), respectively. spectral density function of Eq. (11) are plotted for several
If H(w) is such that values of 'Y in Fig. 2 and Fig. 3, respectively. Clearly, the

[ (1 2 ) a IH( )1 4 ] 1/2 - C (6) process f(t) becomes white noise, with A2 = I, as 'Y -+ O.
max", + W W - 1 < 00, Indeed,

or IIf(t) - w(t)lI~

( 1

[ ) 1/2 2; _~(1 + w2)aIH(w)14dw = C2 < 00, (7) = 27r

[ l!S,(w) - 112dw

-~(1+w2)a J

for some a > 0.5, then
I ~ W4'Y4

= 27r dw

(I ~ ) 1/2 -~ (1 + w2)a(w2'Y2 + 1)2
(Rx ,(t) - RXw(t»)2dt :s Clllf(t) - w(t)lIa, (8)

-~

(I I f l'" [ )=47r + +

0 I I'"

or

max, I Rx)t) - RXw(t) I :s C2I1f(t) - w(t)IIa, (9) :s 47r( 'Y4 II w4dw + 'Y4 ['1' w4-2adw

respectively. 0 I ..
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FREQUENCY, sec") Fig.4 Auto-correlation function of the system versus time; various val-
ues of y

Fig. 3 Spectral density functions versus frequency; various functions
of y

C2(OY) = (I + oy2(&1~(3 - 4{2))ld(oy), (18)
,

+ [ I d(&l) and
1/-r (I + (&I2)G C3(OY) = I/d(oy) (19)

{ Coy' + Coy20-I, 2a * 5 with
= Coy. + Coy20-llln oyl + Coy20-I, 2a = 5a> 0.5. d(oy) = (I + oy2(&1~(1 - 4{2))2 + 4oy.(&I~f.2(1 - f.2). (20)

Equations (17)-(19) show that CI, C2, and C3 tend to I as

(12) oy -+ O. Then, Rx,(I) converges to Rxw(l) consistently with the

Equation (12) demonstrates that the rate of convergence of the preceding property. Figure 4 shows the function Rx,( T) for

excitation towards white noise depends on the norm with respect s.everal values of oy, and for (&10, ~ equal to 2 and 0.05: respec-
to which this convergence is measured; this convergence is tlvely. The rate of the convergence of Rx,(I) to Rxw(l) IS shown

faster for larger values of a. in Fig. 5 where the maximum difference between these two

Next, consider the response of a subcritically damped single- ~u.to-c~rrelation functions is plotted vers~s II oy. In this regard,
degree-of-freedom oscillator to 1(1); the equation of motion is It IS pomted out that for the transfer functIon given by Eq. (14)

one can select the value of a up to 3.5 according to the condition
X"(I) + 2~(&Iox' (I) + (&I~X(I) = 1(1). (13)

The transfer function of this linear system and the auto-correla-
tion function of its response to white noise with unit two-sided
spectral density are

1H«(&I) = 2 2 2 '&' (14)
(&10 - (&I + '..(&10'.1

andRx.( T) = Rxw(O)e-{woITI( cos (&IdlT I + ~sin (&IdITI ) , (15) ~
(&Id ~

0

where (&Id = (&IoJI-:-zi and Rxw(O) = 7r/2~(&I~. If the input ~

excitation is not white but rather has the second moment proper- ~

ties given by Eqs. (10) and ( II ), the auto-correlation function
of the system response is

Rx,(T) = R...,(O) {e-{WoITI (CI(OY) cos (&Idlrl

+ c2(oy)~sin (&Idlrl ) + 2oy3~(&I~C3(oy)e-ITI/-r } (16) 10'S
(&Id I 10 100 1000

where

2 2 2 Fig. 5 Absolute error of the approximation of the auto-correlation func-
C.(OY) = (I +oy(&lo(I-4~ »/d(oy), (17) tionversus1/Y;E=msx,IR.{f)-R.{f)1 , .
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of Eq. (7). Then, Eq. (12) yields that the absolute error tends definition of Eq. (25) can be generalized by substituting the
to zero with the rate 12; this is clearly shown in Fig. 5. function sgn (x) in place of the Dirac delta-function, where

{ I, x > 0
3 A New Random Decrement Procedure: An Effi-cient Estimate of the Auto-Correlation Function sgn (x) = 0, x = 0 (27)

3.1 Theoretical Developments. Vandiver et al. (1982) -I, x < 0

showed that the numerical algorithm of reference (Cole, 1973) is the sign function. This leads to the estimate
yields the auto-correlation function for an ergodic Gaussian N-I

process x(t). Next, the numerical efficiency of estimating the 15(i) = 1. I. sgn (x)x . (28)auto-correlation function by using the Random decrement N k=O k k+I'

method is considered. Let the symbol Xi = x(i~t) denote the. . .. .

value of the process x(t) at the time moment i~t, where ~t is wh!ch utlll~es the. entire length of the record. .Also, ~l~ new

the sampling time. Correspondingly, R(k) = E[Xi Xi+k] denotes estima.te. still requires to perform only summat~ons slmll3! ~o

the value of the auto-correlation function at the time lag k~t. th~ ongmal Random Decrement method. In this regard, It IS

Then, the numerical algorithm of reference (Cole, 1973) can pom!ed out that Eq. (28) can be seen as the average, over all
be expressed as possible reference levels, of an ensemble of Random Decrement

signatures of Eq. (21). Interestingly, Eq. (28) was originally
- 1 N introduced in electrical engineering literature (Hertz, 1982)

Dxo(k) = M I. 17xo(X/ )Xi+k (21) from a pure signal processing perspective.
I-I For ergodic Gaussian process, the generalized Random Dec-

where the bar indicates the estimated value rather than exact, rement signature of Eq. (28) is a random variable. The quality
N is the number of the sampled points in the record of x( t), of the Random Decrement estimation can be assessed by evalu-

and ating the mean and the variance of this random variable. In this

{ A regard its mean value can be readily found as

uX ~x

- I, xE Xo--,Xo+- IN-I. 17xo(X) - [2 2 ]. (22) E[15(i)] = N I. E[x(k + i) sign (x(k»]

0, otherwise k-O

= E[x(i) sgn (x(O»]. (29)
Further, ~x denotes the size of the interval around the selected
reference levelXo, and M is the number of points that belong In th~ Gaussian.case the mathematical e:xpec.tation ope~ator in

to the interval [Xo - (~x/2), Xo + (~x/2)]. If the length ~x the nght-hand side of Eq. (29) can be simplified by usIng the

is sufficiently small and N is large one can set formula

% ~ Px(Xo)~x. (23) E[xg(y)] = E[XY]E[~ g(y) ] , (30)

Thus, the Random Decrement signature of Eq. (21) is approxi- where x an~ y are jointly Gaussian and g(x) is an arbitrary
mately equal to function; see Roberts and Spanos ( 1990). Substituting Eq. (27)

1 into Eq. (30) yields
Dxo(k) = E[Xi17xo(X/-k)]' (24) [ d ]Px(Xo)~x E[15(i)] = E[x(k + i)x(k)]E - sign (x(k»

In the limit, as ~x tends to zero, Eq. (24) becomes dx

Dxo(k) = ~ E[x/6(x/-k - Xo)], (25) = Ca2p(i), (31)

Px(Xo) where a2 and p(i) denote the variance and the auto-correlation
where 6(x) is the Dirac delta-function. It can be readily shown function, no~alized to one for zero time lag, of the process
that the mathematical definitions of the Random Decrement x(t), respectively, and

signature given by Eqs. (I) and (25) coincide. Indeed, [ d ] ~ 1
C = E - sign (x(k» = 2E[6(x(k»] = - -. (32)

1 dx 'fra

~ E[XI6(X2 - Xo)]

Thus, the generalized Random Decrement signature is an unbi-

= ~

II x 6(x - X )p ( X X )dx dx ased estimate of the shape of the auto-correlation function.
(X ) I 2 0 X"X2 I, 2 I 2

Th aI . h R d D . bPx 0 en, upon ev uating t e an om ecrement signature y

using Eq. (28), the auto-correlation function can be estimated

I PXlox,(XI, Xo) dx I I by the equation
= XI

( X ) I = XIPXllx2 (XI X2 = Xo) dxl
PX2 0 - 'fr

Ro(k) = -15(O)15(k). (33)
=E[Xllx2=XO]' (26) 2

However the definition given by Eq. (25) is amenable to a Further, the variance of the generalized Random Decrement
generaliz~tion. estimate ca~ be determin~d af~er some ra~her tediou~ mathemati-

The Random Decrement method based on Eq. (21) is a com- cal calculations summanzed m Appendix B. Specifically,

putationally expedient procedure, since it requires to perform Var (15(i»

onlyMsummationsforeverytimelagk.However,it"wastes" - 2' 0 2a significant part of the response record since only very few - E[15 (I)] - E[15(I)]

pointsfallintheinterval[Xo-(~x/2),Xo+(~x/2)].Thus, a2 ( 2 ) 4a2N-l ( k )the Random Decrement signature of Eq. (21) cannot be used = N 1 - - p(i)2 + N I. 1 - N Po(k, i), (34)

when the response record is short. To remedy this problem the 'fr 'fr k-1
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where

(k .) (k) . ( (k)) p(i)2 + p(k + i)p(k - i) - (p(k + i) + p(k - i»)p(k}p(i) ( .) 2
(35)Po,I=P asmp +.. I. ..,o-p'.

.,,1 - p(k)2

It is even more cumbersome to evaluate the variance of the (40) are evaluated numerically and the corresponding values
estimate of Eq. (33). In this regard one can argue that by of the parameter K are found.

virtue of the Central Limit Theorem, the generalized Random ., . . .
Decrement signature D( k) of Eq. (28) tends to exhibit Gaussian. Example 2. Consider the GaussI~n white noise signal. That
properties (Ditlevsen et al., 1996; Mohr and Ditlevsen, 1996). IS, the s~quence of zero mean, Gaussian, and uncorrelated ran-

Then, with probability 95.5 percent for the estimate of Eq. (28) dom vanables. Then,

it can be argued that p(i) = boJ' (44)

D(i) E [D(i) - 2~Var (D(i)) , where b/J is the Kronecker delta. Utilizing Eqs. (34), (35),

. I.. ,~,.,' (38), (39), (41), (42), and (44), the variance of the corre-

D(I) + 2vVar (D(I))]. (36) sponding estimates is found equal to

Similarly, with probability 95.5 percent for the estimate of Eq. - ( 7r ) a4 (33) it can be argued that Var (Ro(O)) "" 4 - - 1 -

- 2 N

Ro(i) E [R(i) - 2110(i), R(i) + 2110(i)], (37)
where ' = ~ a2 > ~ = Var ("R-;(O)). (45)

lIo(i) = ~ (alp(i)l~var (D(O)) + a~var (D(i))). (38) Thus, the standard estimate of Eq. (40) is more accurate for
~ 2 this problem. This result should be expected since the estimate

Therefore, the variance of the estimate ~(k) can be approxi- (40)!s ~n "e~ficient estimate" (Cramer, 1946) in this case.
mated by the equation That IS, It attaIns the lowest Cramer-Rao bound and has the

- smallest variance among all possible unbiased estimates
Var (Ro(i) "" lIo(i)2 (39) (Cramer, 1946). On the other hand, the estimate of Eq. (33)

., requires to perform only N numerical operations, N - 1 addi-

3.2 Co~putatlonal Efficiency. .Next, the usefulness of tions and 1 multiplication, whereas the estimate of Eq. (40)

the genera~lze~ R~ndom Decrement ~Ignature can be assessed requires 2N - 1 numerical operation. The parameter K, Eq.

~y comp~ng It :-Vlt~ the standard estlm.ate of .the a.uto-corr~la- ( 43), is equal to 2.28 for the Random Decrement based estima-

t~on functl~n which IS c.ommonly used ~n engmeenng appllca- tion, and is equal to 4 for the standard estimation procedure of

tlons. Specifically, consider the expression Eq. (40). That is, the requisite calculations can be performed

- 1 N- I approximately 40 percent faster by using the generalized Ran-
R2(i) = - ~ x(k + i)x(k), i = 0,1, ... M - 1'. (40) dom Decrement signature.

N t-O

Example 3. Consider a stationary process with the auto-
correlation function

Comparing Eqs. (28) and (40) it is seen that Eq. (40) requires
twice, roughly, as many computations (N multiplications and N R(t) = a2e-{"'oITI ( cos W IT I + ~ sin w IT I) (46)- 1 additions) as the generalized Random Decrement signature d Wd d ,
does. The variance of the estimate of Eq. (40) can be readily

determined in the Gaussian case. Specifically, This auto-correlation function corresponds to the white noise
. a4 response of a simple oscillator governed by Eq. (13). The va1-

Var (R2(i») = - (1 + p2(i» ues of a, Wo, {, ~t and N are taken equal to 1,2,0.05,0.05

N and 5000, respectively. The variance of the. estimates of Eqs.

2a4N-1

( k) (33) and (40) are shown in Fig. 6. Similarly to the previous
+ - ~ 1 - - P2(k, i), (41) example, the direct estimate of the auto-correlation function of

Nt-I N equation (40) provides a slightly smaller variance of estimation.

However, Fig. 7 shows the ratio Ko/K2 for these two estimates
where versus the time lag i. It appears that the estimate of the auto-

. 2 .. correlation function which is based on the generalized Random

p2(k, I) = p(k) + p(k + I)p(k - I). (42) Decrement signature is, on average, 40 percent more expedi-

Evidently, the variance of the estimates of the auto-correla- tious computationally.

tion function given by Eq. (39) or Eq. (41) is approximately
proportional to l/N. Further, the number of computations 4 Conclusions

(flops) required by Eqs. (33) and (40) is also. proportional to The developed analytical results elucidate the approximations
N. Then, the parameter K defined by the equation involved in using the Random Decrement signature for system

K = Var (R"). #flops (43) identification purposes while treating the system excitation as

a white noise process. Further, the erroneous interpretation of

is approximately equal to a constant and can be used to deter- the results of Caughey and Stumpf ( 1961 ) invoked by Vandiver

mine the number of required computations for ensuring a speci- et al. (1982) for understanding the features of the Random

fied error bound. In the following examples the variances of Decrement signature is rectified. Also, the introduction of the

the estimates of the auto-correlation function of Eqs. (33) and generalized Random Decrement signature as an average of the
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This appendix presents the proof of the property involved in
LAG i Section 2. In this regard, it is noted that the stationary responses

F. 7 Th ti f th . It ' I.ed b th . ed . I xf(t) and xw(t) of a linear system with the transfer function
Ig. e ra 0 0 e vanances mu Ip lye requlr numenca . . .

operations of the estimates of the auto-correlation function of Eqs. (33) H(tAJ) to the colored random excItatIon f(t) and to the whIte
and (40) noise w(t) of power x. 2 have the spectral density functions

S,,(tAJ) = I H(tAJ) I 2SJ<tAJ). (A.I)

traditional Random Decrement signatures, over the possible and
thresholds, yields an expeditious estimate of the auto-correlation
function which coincides with the definition independently pro- S'w(tAJ) = IH(tAJ)12x.2. (A.2)

posed in electrical engineering from a pure signal processing
perspective. Finally, the expression derived for the variance of r~spectively. Note that due to the Parseval identit't for the Fou-
this estimate merits attention. ner transform couple R(t) and S(tAJ) one can wnte
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oS max{(1 + w2)"IH(w)14}
[ 1 PI2 PI3 P14

]r = q2 PI2 1 P23 P24. B.I

X 271" [ (1 + w2)-«IS,(w) - ~212dw PI3 P23 1 P34 ( )

-. PI4 P24 P34 1

= max{(1 + w2)"IH(w)14}lIf(t) - w(t)II:, (A.4) It has the appealing feature of taking advantages of the simplifi-.

. '" cation induced by working with the characteristic function of

If H(w) IS bounded and decays at infinity sufficiently fast so the random vector! = (XI, X2, X3. X4)' (Lin 1976), where ()'
that denotes vector transposition. Specifically, consider the equation

( max ( 1 + w2 ) "

I H

( w

)1 4 ) 1/2 = C < 00

( A5 ) f 1 fI . E[f(x)] = f(x)p(x)dx = - j(9)p(9)dO, (B.2)

for some a > 0.5, the upper bound of the mean square error is - - - - (271")" - - -

([ ) 1/2 where p(x) and. p(9) are the probability distribution function

(R,,(t) - R..(t»2dt oS Clllf(t) - w(t)IL.. (A.6) and the characteristic function, respectively. The hat denotes

-. the symbol of the Fourier transform. That is,

~eequalit>:signinEq.(A.6)i~attaine~fortherandomexcita- p(!!.) = [p(!)e-i~"d:!. (B.3)

tlon f(t) With the spectral density function -.

{ 2 C I I Further, note that

~ + , w::t Wo < 'l

S,(w) = 2 ' (A.7)

~ , otherwise

i = 271";0'(9), sg~x) = -2;( pv!) ,

in the extreme case when 1) -. O. Here, Wo is the frequency at 9

y-hich th~ function (1 + w2)"I.H(w)14 attains its maximum, C . - -(1/2)8'16

IS an arbitrary constant, and 'lIS a small parameter. p(!) - e - -, (B.4)

. The absolute error between the two auto-correlation functions
h I:'

( lI ) d t th d . .

f th D . d 1 f .

can be also readil found w ere U 17 .eno es . e . envatlve 0 ~ lrac e ta- unction,

y and pv (1/9) IS the pnnclpal value functional of the argument.

max I R, (t) - R..(t)! Then, the mathematical expectation of XIX2 sgn (X3) sgn (X4)

t can be expressed as

= maxl[~ (S,,(w) - S,w(w»e;"'dwl E[X(X2 sgn (X3) sgn (X4)]

1 [ [ 1 {)2

oS [ IH(w)12IS,(w) - ~2ldw = -;2pv -.pv -~~~

-~

( 1

)1/2 X exp - - 9'r9 8 0 d93d94

X([~(I+W2)«IH(W)14dw)1 2- - 8~:O

= - ~ pv [ pv [ -Y- e-("Z/2)(8~+838oP34+8~)d93d94

([ ) 1/2 71" -~ -~ 9394

X (1 + W2)-«!S,(w) - ~212dw

-.

+ q4P13P23 [ [ 93 -("z/2)(8z+88.. +8Z)
d ll d ll

2 pv - e 3 3...34 . 173 174

71" -~ -~ 94

( 1

[ ) 1/2 = _

2 (1 +w2)"IH(w)14dw IIf(t)-w(t)ll... (A.8) + q4p'4P24 [ [ 94 -("z/2)(8z+88.. +8z)

d ll d ll

71" -~ 2 pv - e 3 3...34 . 173 174

71" -~ -~ 93

If H(w) is such that + q4(PI3P24 + P14P23)

2
( [ ) 1/2 71"

~ -~ (1 + w2)"IH(w)14dw = C2 < 00 (A.9) x [~f e-("Z/2)(8~+8"oP34+8~)d93d94. (B.5)

for some a > 0.5, the absolute error satisfies the inequality The first integral in the right hand side of Eq. (B.5) can be
evaluated by consulting the table of integrals (Gradshtein and

maxIR,,(t) - R'w(t) I oS C2I1f(t) - w(t)Ik.. (A.lO) Ryzhik, 1994) and using the following transformation

Again the spectral density function S,(w) which provides the

( - .!.

) pv [ pv

[ -Y- e-("Z/2)(8~+8,8zp+8~)d9 d9

equalityinEq. (A.lO)can be readily deterrnined by the equation 71"2 -~ -~9192 12

SAW) = ~2 + C(I + w2)"IH(w)12, 1

=- ..~ [ f sgn(xI)Sgn(X2)

where C is an arbitrary constant. 271"q2",1 - p2 -~

( 2 2 2 )XI - XIX2P + X2
APPENDIX B x exp - 2q2(1 - p2) . dxldx2

This mathematical appendix adresses the computation of the

mathematical expectation of the product X,X2 sgn (X3) sgn (X4), 1
[ ( ( XP

) )w?ere XI' ~2' X3, X4 3!e zero mean Gaussian random variables = & -~ sgn (x) 1 - 2~ - u~

With covanance matnx P

"
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X exp (- ~)dx = ~ [ cI>(I~ ) pll [ f ~ e-(,,212)(8~+8,82P+8~)d9Id92 = - --:;~~ (B.8)

20' '/211" 0 '/1 - p2 -~ 92 0'2'/1 - p2

X exp(- ~)dx - 1 = ~ atan
(I~ ) [ f e-(,,212)(8~+8,82P+8~)d91d92 = 211" (B.9)

2 11" '/1 - p2 -~ 0'2~-p2

- ~. ) B 6) Sub~tituting Eqs. (B.8), (B.6) and (B.9) into Eq. (B.5) one
- asm (p, (. obtains

11"

where cI> is the probability function 2 [E[XIX2 sgn (X3) sgn (X4)] = - 0'2 Pl2 asin (P34)

I f' ( U2 ) 11" cI>(X) = ~ exp - - duo (B.7)

'/211" -~ 2

The last tree integrals in the right-hand side of Eq. (B.5) can + PI3P24 + PI4P23 - P34(PI3P23 + PI4P24)
] (B 10)be readily determined. Specifically, ~ .

,

~
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